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Abstract

A 19% wall plug efficient cw 3.7 watt TEM Nd:YVO,
laser was demonstrated using a GaP microlens-coupled
diode bar pump. Pump and solid-state laser scaling will be
discussed.

Introduction

Longitudinal diode pumping, especially at low power
levels, has yielded the most efficient solid-state lasers. A
challenge to developers of lasers for space applications
has been to effectively scale longitudinal pumping sources
employing diode bar devices in order to reach higher
output powers while maintaining efficient performance.
Another necessary attribute of a pump source is that it be
simple to implement which translates to minimization of
cost, weight, and volume of the overall device. Several
approaches using gain guided bars have been demon-
strated with various levels of success [1,2]. We recently
reported a new solid-state laser pump device which uses
an array of 100 GaP microlenses (formed on the surface of
aGaP substrate) to collimate a diode bar composed of 100
single mode index guided diode lasers. The strength of our
approach is that a single microlens array can efficiently
collect and collimate all the index guided lasers from a
diode laser bar array, assuming all lenses and laser devices
are optimally positioned with respect to each other. Fur-
thermore, the novel index guided laser diode bar designis
in principle, as easily fabricated in volume as currently
produced cw broad area emitter (typically 50-200 pum
astigmatic emitters spaced over 1 cm) diode bar devices.
The small difference in production cost between the two
types of diode bar devices can be traced to a few more
processing steps and a lower percentage yield in the index
guided devices. In this paper we report our first results on

the integration of a 10 watt index guided diode laser bar
device with a GaP lens array for pumping a Nd:YVO,
laser.

Microoptic Design and Results of Integration with
the Diode Bar

As reported earlier {3], our lens arrays are composed of
hyperbolic lenses placed on 100 pum centers with focal
lengths typically ranging (depending on the design) from
200-300 um. The vertical diameters of the lenses are
currently set to 300 pum, while the horizontal diameters
are limited to 100 pm by neighboring lenses. Although
each lens on the array is truncated by 1/3 on either side,
it can still accommodate the lower divergence of the
diode emitter parallel to the diode junction (see Fig. 1).
A single SDL-5410 100 mW index guided laser device
typically has a single transverse mode which is diffrac-
tion limited from approximately a 1 x 3 pum emission
aperture. The output divergence of these laser devices is
nominally specified at better than 10 by 30 degrees
FWHM. Our measurements have shown that some
single mode laser diode devices are less divergent than
specified in the slow axis which can result in output with
greater than a 3:1 aspect ratio. A single lens from the
array after application of an AR coating typically collects
and collimates ~90% of the total emission from an SDL-
5410. When this light is refocused with a 2.1 cm fl
achromat (macrolens) we obtain a focused spot diameter
which is approximately equal to the predicted size of
~240 by 80 um (1/e?). However, when using various
combinations of bars and arrays we find that the spots, on
average are ~2.5 times larger than the theoretical limit
and that the throughput is between 80 and 90%. To
obtain the highest throughput, a GaP lens array with a
shorter focal length of 200 um and the same 300 pm
diameter was used. This improved the light collection




efficiency to 94%, yet increased the focused spot size to
500 by 200 um. Finally we note that when using a 2.1cm
macrooptic, the effective NA of this source is 0.25, deter-
mined from the outermost emitters.

Microlens array
Diode illumination

e

Single lens

Figure 1. Ilustration of adjacent lenses in array and
illumination by diode bar.

A. Focusing Parameters

The final spot of the diode bar and lens system is the
sum total of 100 individual Gaussian beams which over-
lap at the back focal point of the macrolens. The size and
aspect ratio of this spot is determined by the initial size of
the beams emitted by the individual diode element, the
focal lengths of the micro and macrolenses, and the
position of the microlens array from the diode bar. Since
the emitters are index guided devices, it is reasonable to
assume that the output at the facet of the emitters consti-
tutes a beam waist for both the horizontal and vertical
axes. If the lens array is placed at its focal length away
from the diode bar then the final spotis an enlarged image
of the intital spot with a manification factor given by the
ratio of the macrolens and microlens focal lengths. A
modification of the resultant 3:1 horizontal to vertical
aspect ratio of the final spot can be accomplished by
slight displacements of the microlens array from its focal
length distance from the emitters. Itcan be shown that the
final spot ®, in terms of the intial spot ®,, micro and
macro focal lengths f, and f,, and the displacement of the
microlens array Az is given by
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Because of the strong dependence on @, the displacement
has a much greater effect on the vertical dimension since
the intial vertical spot (~.5 pm) is 3 times smaller than the
initial horizontal spot (~1.5 pm). Thus the vertical width
can in principle be expanded to symmetrize the spot with
anegligible increase in size in the horizontal plane. (For
a fixed f, and f,, the minimum spot size is, however,
obtained with Az equal to zero.) Reduction of the spotcan
be accomplished by decreasing the focal length of the
macro lens, f,. However, this increases the intersection
angle of the overlapping beams which increases their
effective cross sectional area. Generally this effect is not
asimportant as is the decrease of the overlap depth, which
is inversely proportional to f, and counteracts the advan-
tage gained by reducing ©,. Thus, an optimum balance
between the spot size and overlap angle, in view of the
laser material and resonator, must be reached in order to
maximize the performance of the overall system.

B. Improvement of the Pump Spot

There are several factors that could cause the focused
spot of the integrated diode bar and microlens array to
exceed the theoretical limit. Because of the small size of
the emitter the final spot is sensitive to alignment. For
example, a 1 pm displacement in the vertical direction
would result in a vertical translation of the focused image
by one spot diameter. Most of the alignment problems can
be traced to the diode array and lens array fabrication
processes. Both devices are defined by photolithography
at a submicron level of accuracy. In the case of the diode
bar, deviation can occur when the diode chip is bonded to
the heat sink. The mismatch in thermal expansion coeffi-
cients causes a bow (or smile) to occur over the 1 cm
device upon cooling. In Figure 2, projected images of two
bars are depicted, one with a 1 um variation over the cm
and the other with a 3.4 pm variation. Improvements are
on going by vendors to solve the "smile" problem, which
will ultimately affect device yield. Regarding lens array
problems, we have sometimes observed expansion of the
lens array by several microns following a high tempera-
ture annealing step used during fabrication. Tests are
currently in progress to determine if the effect is system-
atic, in which case it can be corrected for by photolitho-
graphic mask modification. Despite the sensitivity of the
system to these alignment issues, we have been ableto get
to within a factor of two from the theoretical minimum
spot size (using the 1 pm smile bar), which indicates that
we are physically able to align the bar and lens arrayona -
submicron level. In addition, a problem separate from the
displacement issues is the possible variation of the
microlens focal length across the array. This issue could
be related to the homogeneity of our milling process
which is currendy being improved.




Figure 2. Projected image of two different100 element laser diode bars. The bar on the left has vertical deviation of 1 pm,

while the bar on the right has a deviation of 3.4 um.

Nd:YVO, Laser Results
The pump source described above was configured as
shownin Fig. 3 for longitudinal pumping of a3.7 mm path
length 1% Nd:YVO, laser crystal witha flat HR coating on
one surface and a flat AR coating on the other: with the
available optics, the best performance was achieved with
a 30 cm ROC 95% reflective output coupler and a cavity
length of 15 cm. A performance curve for this resonator
is displayed in Figure 4. We define the (effective) pump
power as the amount of light passing through an adjust-
able iris that has been placed between the macrolens and
the laser crystal and closed just until the output power of
the laser drops. Despite the 94% throughput of the 200pum
fl microlens array, we have observed that not all the light
is focusable onto the mode of the laser. Using the iris we
have measured the overall delivery efficiency of optical
power from the bar to the laser mode to be 88%. For 8 W
of effective pump power the laser yielded 3.7W of TEM
output with a slope efficiency of 48% and an optical
conversion efficiency of 46%, the highest yet demon-
strated forabar pumped device. At very low pump powers
the output beam of the resonator is nearly circular. Atthe
higher pump levels, thermal lensing causes the laser
output mode to mimic the aspect ratio of the pump.
Beyond 8 W of pump power the thermal lensing resulted
in mode breakup and output power loss. If the resonator
bad remained stable for the full 10 W capability of the bar
(~9 W effective pump) we would have expected an output
of ~ 4.1 watts. We are currently examining alternative
resonators and thermal management issues to remedy this
problem.

To establish a baseline performance level, a
Ti:sapphire laser was used to pump the same laser resona-

tor with up to two watts of pump power. With all the pump
light absorbed the optical slope efficiency reached 55%.
Thus, after correcting for the 5% transmission of the bar
pump lightby the crystal, the microlens coupled diode bar
is only 4% lower in efficiency than an ideal pump source
for this particular cavity design. Based on the electrical
power to the diode, the Nd:YVO, laser operated at 19%
wall plug efficiency. To our knowledge, thisis the highest
efficiency multiwatt solid state TEM,, laser yet demon-
strated. Greater efficiencies should be obtainable for these
higher power end pumped systems if both the resonator
and pump modes are reduced (as suggested in Fig. 4 by the
63% slope efficiency obtained with a smaller Ti:sapphire
pumped resonator) and if the thermal effects can be
adequately handled.

The output power of index guided sources have
recently been extended to two hundred milliwatts [4] per
emitter which implies that this technology could easily be
upgraded to yield 20 Watts per bar output. We are
currently examining this approach as well as increasing
the number of bars toreach higher pump powers. Wehave
assembled a 4 diode bar pulsed/cw device to be used for
approximately a 1 mm mode diameter longitudinally
pumped laser.

Summary :
GaP microlens arrays have been successfully integrated
with matching 10 watt index guided 100 element diode
laser arrays. Nearly 90% of the light was collected and
delivered to a spot of diameter 500 pm with an NA of 0.25
for pumping of a Nd:YVO, laser. 3.7 Watts of TEM
output was obtained at 1.06pum at a wall plug efficiency of
19%.
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Figure 3. Diode bar plus microlens array configured to longitudinally pump a solid state laser.
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Figure 4. Nd:YVO, TEM,, 1.06 m laser output plotted against pump power incident on the HR face of the laser crystal.
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